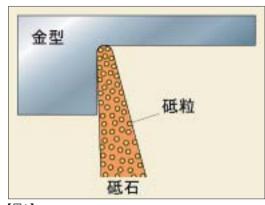
プ「創造の芽」(研究シーズ情報®) ^{岩手大学工学部} 水野 雅裕助教授

微細化する部品のため 放電の力を応用

砥石を削る装置の開発

「砥石」というと日常的になじみ深いものですが、 最先端の工業分野でもその存在は欠かせません。特 に小型化する製品に対応するため、従来以上の精度 で「砥石を削る」技術が求められています。今回は そうした「砥石を削る」方法と装置の開発例を紹介 します。

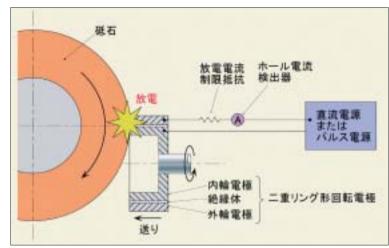

四角い砥石とまるい砥石

砥石と言えば、普通の人は、料理に使う包 Tを研ぐときや、農作業に使うカマなどを研 ぐときに使う、あの古典的な、四角い砥石を すぐに頭に描くのではないでしょうか。しか し、四角い砥石ばかりが砥石ではありません。 工業的にはもっぱらまるい砥石が使われてい て、ものづくりの最先端で大活躍しています。

砥石と金型

携帯電話に代表されるように、情報機器 の高機能化・小型化が猛烈な勢いで進んで います。そうした機器に組み込まれている 微細な部品の多くは、金型を利用して作ら れています。金型には、一個の金型でたく さんの部品を作らなければならないという 使命が与えられていますから、すぐに磨り 減ってしまっては困ります。したがって、 金型は耐磨耗性に優れた硬い金属で作られ ます。こうした硬い金属を削るために砥石 が使われています。

工業的に用いられている最先端の砥石は、 ダイヤモンドやcBN (立方晶窒化ホウ素)な どの砥粒を、ガラスや耐熱樹脂、あるいは 金属で焼き固めて作られます。そしてそれ を工作機械の回転軸に取り付けて回転させ、 その刃先で材料を削ります。図1は、金型 の隅部を砥石の刃先で削っている様子を表 したものです。部品の微細化に伴って、金 型の隅部半径はどんどん小さくなる傾向に あり、これに伴って新しい技術が必要にな ってきています。



【図2】

砥石による金型隅部の加工

砥石を削る方法の原理

(609) #1

パソコン上の操作画面

利点に隠れた欠点

金型の隅部半径を小さくするには、砥石の 刃先を鋭くする必要があります。しかし、刃 先が鋭くなるほどその摩耗は早くなります。 したがって、耐磨耗性に優れた砥石(砥粒を 金属で固めた砥石)を使用して寿命を長くし たいのですが、こうした砥石は耐磨耗性に優 れるがゆえに、刃先を鋭くしようとしてもな かなか効率よく鋭くすることが困難です。耐 磨耗性に優れた砥石を、いかに高精度・高能 率に削るかが金型メーカーにおいて大きな課 題となっています。

砥石を削る

1998年、岩手大学、岩手工業技術センター、 地域の金型関連企業がコンソーシアムを組織 し、金型製造プロセスに関する研究開発を行 いました。このコンソーシアムに先立ち、大 学側が金型関連企業に出向いて、企業が直面 している技術課題を調査したところ、上記課 題が数社からでてきました。これがきっかけ となり、この課題をコンソーシアムの研究課

題の一つとして取り上げ、砥石を削る装置の 開発に着手しました。その後、RSP事業など の支援を得て、装置の実用化研究を進めてき ました。

開発中の装置(図2)は、放電によって砥 粒を支持している金属を溶かし、砥粒を脱落 させることによって砥石を削っていきます。

原理図を図3に示します。放電電流や放電 電圧が常に適正値になるよう、ノートパソコ ンによって制御されますので、図4に示す操 作パネル上で、一度条件をセットしてしまえ ば作業者がずっとそばに付いている必要はあ りません。

今後の展開

砥石の仕様は無数にあるといって過言では ありません。砥石の仕様によって最適な放電 条件は変わってくると考えられます。今後は、 砥石メーカーをも巻き込んで、適切な放電条 件に関するデータベースを構築する必要がで てくると考えています。

産業情報いわて 11 10 sangyo joho-iwate